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In the case of a gyroscope including a cylindrical fluid-filled cavity, the classic
Poinsot’s coning motion can become unstable. For certain values of the solid inertia
ratio, the coning angle opens under the effect of the hydrodynamic torque. The
coupled dynamics of such a non-solid system is ruled by four dimensionless numbers:
the small viscous parameter ε = Re−1/2 (where Re denotes the Reynolds number), the
fluid–solid inertia ratio κ which quantifies the proportion of liquid relative to the total
mass of the gyroscope, the solid inertia ratio σ and the aspect ratio h of the cylindrical
cavity. The calculation of the hydrodynamic torque on the solid part of the gyroscope
requires the preliminary evaluation of the possibly resonant flow inside the cavity. The
hydrodynamic scaling used to derive such a flow essentially depends on the relative
values of κ and ε. For small values of the ratio

√
κ/ε (compared to 1), Gans derived

an expression of the growth rate of the coning angle. The principles of Gans’ approach
(Gans, AIAA J., vol. 22, 1984, pp. 1465–1471) are briefly recalled but the details of the
whole calculation are not given. At the opposite limit, that is for large values of

√
κ/ε,

the dominating flow is given by a linear inviscid theory. In order to take account of
viscous effects, we propose a direct method involving an exhaustive calculation of
the flow at order ε. We show that the deviations from Stewartson’s inviscid theory
(Stewartson, J. Fluid Mech., vol. 5, 1958, p. 577) do not originate from the viscous
shear at the walls but rather from the bulk pressure at order ε related to the Ekman
suction. Physical contents of Wedemeyer’s heuristic theory (Wedemeyer, BRL Report
N 1325, 1966) are analysed in the view of our analytical results. The latter are tested
numerically in a large range of parameters. Complete Navier–Stokes (NS) equations
are solved in the cavity. The hydrodynamic torque obtained by numerical integration
of the stress is used as a forcing term in the coupled fluid–solid equations. Numerical
results and analytical predictions show a fairly good quantitative agreement.

1. Introduction
The behaviour of an isolated precessing tank is very dependent on the

hydrodynamics of the fluid contained and approaches by energy dissipation evaluation
(Garg, Furunoto & Vanyo 1986; Vanyo 1993), although very useful, can be insufficient.
An accurate prediction of a possible destabilization of the coupled fluid-structure
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system implies a good understanding of the flow forced by the precessional motion
of the container.

Initial theoretical work on rotating fluids can be attributed to Sir W. Thomson
(Thomson 1880), who suggested that the linear inviscid flow of a disturbed rotating
fluid could be written as a sum of so-called Kelvin modes. Using Lord Kelvin’s
approach, Greenhill (1880) calculated the inviscid flow in a rotating ellipsoidal cavity.
As shown later by Kudlick (1966) and Greenspan (1968) for sufficiently high Reynolds
numbers, viscous effects can be taken in account as corrections to Kelvin’s inviscid
approach. Experiments performed later (Fultz 1959; McEwan 1970; Kerswell &
Barenghi 1995; Kobine 1995, 1996; Meunier et al. 2008) confirmed not only the
values of the resonant eigen frequencies but also the times of viscous decay predicted
by these linear theories. A theoretical expression of the viscously saturated amplitude
at the resonance was established by Gans (1970). Meunier et al. (2008) confirmed
Gans’ prediction and gave a more complete expression for the amplitude of the
resonant mode, taking in account both viscous and nonlinear terms in Navier–Stokes
(NS) equations. However, further experimental work performed at sufficiently high
Reynolds numbers (McEwan 1970; Thomson 1970; Manasseh 1992, 1994, 1996;
Mahalov 1993) showed a systematic destabilization of the resonant flow into a fine-
scale turbulent flow. This so-called resonant collapse, probably resulting from a triad
mechanism (Lagrange 2008), was explored by Kerswell (1999). In the present work,
we do not take into account nonlinear effects such as triadic coupling senario of
destabilization, since only very small coning angles are considered.

Pioneering theoretical work on the stability of a fluid-filled gyroscope was performed
by Milne (1940), who applied Greenhill’s inviscid solution for an ellipsoidal cavity to
a completely liquid-filled spinning projectile, and exhibited a stability criterion in the
form of a diagram (the so-called Milne’s graph). Two decades later, Stewartson (1958)
extended Milne’s approach (Milne 1940) to the case of a partially or completely filled
cylindrical cavity (Stewartson’s theory was also based on the assumption that the
inside liquid had zero viscosity). Milne–Stewartson’s theory revealed the existence of
unstable ranges of solid inertia ratio, for which the coning motion of the gyroscope
forces a Kelvin mode close to one of its resonances. However, the discrepancies
between these theories and the experiments performed by Ward (1959) were confirmed
by further experimental data presented by Karpov (1962, 1965), Scott & D’Amico
(1973) and D’Amico (1977, 1981). Indeed, the observed resonant frequency of the
fluid-filled gyroscope was slightly (but systematically) shifted compared to the inviscid
resonant frequency predicted by Stewartson (by resonant frequency, we mean here the
frequency at which the growth rate of the coning angle is maximum). Besides, the
growth rate of the coning angle was not strictly zero outside the range of unstable
solid inertia ratios predicted by Stewartson.

Wedemeyer (1965, 1966) gave the first interpretation of these observations, invoking
a change in the effective aspect ratio of the cylindrical cavity due to the thickness
of the viscous boundary layers. Wedemeyer’s theory, which is valid at high Reynolds
numbers, is based on the following equivalence: the viscous system of aspect ratio
H/Rc (H and Rc denote the height and radius of the cylindrical cavity) behaves as
an inviscid system of aspect ratio (H − δH )/(Rc − δRc), where δH and δRc are the
thicknesses of the viscous boundary layers on the top and lateral walls of the cylinder,
respectively. At sufficiently high Reynolds numbers, the thicknesses of both boundary
layers are proportional to ε. Consequently, since the value of the inviscid resonant
frequency only depends on the aspect ratio, Wedemeyer’s approach leads to a shift
proportional to ε at leading order. In principle, Wedemeyer’s work, as an extension
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of Stewartson’s inviscid theory, does not hold in a close vicinity of any hydrodynamic
resonance.

Gans (1984) derived an expression of the growth rate of the coning angle which is
valid close to the resonance by applying the saturated viscous solution proposed by
Gans (1970) himself to the dynamics of a near-resonant fluid-filled gyroscope. Instead
of considering the main contribution of the flow as inviscid, the author calculates
the viscously saturated amplitude of the main resonant Kelvin mode. This amplitude,
which is O(ε−1), is determined by a solvability condition for the problem at the next
order.

The main objective of the paper is to extend in a rigorous way Stewartson’s
inviscid theory to the case of a viscous fluid. Unlike Wedemeyer, whose method is
heuristic, we adopt a perturbative approach that allows for an exhaustive calculation
of the different viscous contributions to the total hydrodynamic torque. This method
guarantees that all the contributions of same order are taken into account. The second
objective is to perform an identification of Wedemeyer’s physical ingredients, which
are not clear due to the intuitive nature of the work.

The paper is organized as follows. In § 2, we first present a reminder of Stewartson’s
approach (Stewartson 1958). We propose a simple criterion which defines the limit of
validity of the theory presented in § 3. The main steps of the theory are given in the
body of the article, while the tedious details of the calculations are gathered in the
appendices. Precisions concerning the regime of applicability of Wedemeyer’s theory
are given at the end of § 3. In § 4, theoretical results are tested for a large range of
physical parameters (Reynolds number Re, fluid–solid inertia ratio κ) by means of
numerical simulations. Discrepancies between the numerical results and the present
theory are discussed at the end of the section.

2. Presentation of the problem
2.1. Definition of the frame of reference – kinematics

A cylindrical cavity full of fluid (viscosity μ, density ρ and kinematic viscosity
ν = μ/ρ) is included in an axisymmetrical solid rigid body. Both solid and fluid parts

of the gyroscope have the same axis of symmetry k̂. The centre of gravity of the
whole system is supposed to be located at the centroid of the cylindrical cavity and
we assume the mass of fluid is relatively small compared to that of the solid. R0

denotes the inertial reference frame.
Two sets of non-inertial frames are then introduced, depending on whether we

are interested in the hydrodynamics of the contained liquid or in the fluid-structure
coupled dynamics. Unitary vectors related to a given reference frame are referred to
as x, y and z with the appropriate subscript. The first set of reference frames (Rψ , Rθ ,
Rφ), suitable for the hydrodynamics, corresponds to the classic Euler’s coordinates
(ψ , θ , φ), as shown in figure 1(a). In the reference frame of the cylinder Rφ , the
position of any point is defined by its polar coordinates (R, ϕ, Z). Integrality of the
theoretical analysis for hydrodynamics is achieved in Rφ . In the remainder of the text,
spin angular velocity φ̇ and precessional velocity ψ̇ are referred to as Ω1 and Ω2,
respectively. Ω is the time-dependent rotation vector of the whole system.

The second set (Rα , Rβ), suitable for the study of the coupled fluid-structure
dynamics, corresponds the Cardan’s coordinates (α, β) as depicted in figure 1(b).
Actually, Rα and Rβ are the natural reference frames for classic experimental
gyroscopes.
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Figure 1. Definition of the frames of reference. (a) Euler’s angles suitable for
hydrodynamics. (b) Cardan’s angles suitable for coupled fluid-structure dynamics.

2.2. Formulation of hydrodynamics

The NS equations, written in the non-Galilean frame of reference Rφ take on the
following form

∂U

∂T
+ (U · ∇) U + 2 Ω × U +

dΩ

dT
× R + Ω × (Ω × R) = − 1

ρ
∇P + ν�U (2.1a)

and

∇ · U = 0, (2.1b)

with the boundary condition U= 0 at the walls. In (2.1a), R, U and P refer to the
radius vector, fluid velocity and pressure, respectively. The last three inertial terms
of the left member are the Coriolis acceleration, the acceleration due to the non-
stationarity of Ω and to centrifugal acceleration. As we consider the case O ′ = O ,
the term coming from the acceleration of the centre of gravity vanishes (otherwise, it
could be incorporated in the pressure gradient). To specify the relative position of Rφ

and Rθ at T = 0, we write

Ω = Ω [̂k + ε η(T )], (2.2)

with Ω = Ω · k̂= Ω1 + Ω2 cos θ , ε =Ω2 sin θ/Ω and η(T ) = cos(Ω1T ) xφ − sin(Ω1T ) y
φ
.

Equation (2.1a) can be made dimensionless by choosing εΩRc, Ω−1 and Rc as
typical scales for velocity, time and distance, respectively. Using lowercase letters for
dimensionless quantities and neglecting the nonlinear terms (proportional to ε2), we
obtain the linear dimensionless form of (2.1a)

∂u

∂t
+ 2 k̂ × u + ∇p = −2ωr cos(ωt + ϕ) k̂ + ε2 �u, (2.3)

where ε = (ΩR2
c /ν)−1/2 = Re−1/2 is the small viscous parameter and ω = Ω1/Ω . The

dimensionless pressure, which includes every potential terms, is

p =
P

ρεΩ2R2
c

− 1

2

r2

ε
+ (1 − ω)rz cos(ωt + ϕ). (2.4)

Further comments must be made on the hypothesis of linearization of (2.1a). For the
nonlinear effects to be negligible in comparison with the viscous ones, the ratio ε2/ε
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must be greater than 1. This condition can be rewritten θ < |1 − ω|−1Re−1. As the
forcing frequency and the Reynolds number are known in each case, the limit angle
beyond which the nonlinear effects intervene is fixed (at least in order of magnitude).

In the remainder of the paper, (u, v, w) are the dimensionless cylindrical
components of u in the reference frame Rφ and, for the sake of concision in the
notations, v =(u, p) designates the velocity–pressure field.

Let us give now the expression of the complex solution to the inviscid form (ε = 0)
of (2.3). The inviscid flow v(0) in a forced precessing cylinder has been calculated by
several authors (cf. Greenspan 1968 for example). It can be sought in the form of a
particular solution vpart. completed by an infinite sum of Kelvin modes

v(0) = vpart. +

∞∑
i=1

a(0)

i v(0)

i ei(ωt+ϕ). (2.5)

In the previous expression, v(0)

i ei(ωt+ϕ) is the Kelvin mode of axial wavenumber k(0)

i ,
radial wavenumber δ(0)

i and frequency ω with

v(0)

i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
ωrδ(0)

i J ′
1

(
δ(0)

i r
)

+ 2J1

(
δ(0)

i r
)

r(ω2 − 4)
sin

(
k(0)

i z
)

−
2rδ(0)

i J ′
1

(
δ(0)

i r
)

+ ωJ1

(
δ(0)

i r
)

r(ω2 − 4)
sin

(
k(0)

i z
)

i
k(0)

i

ω
J1

(
δ(0)

i r
)
cos

(
k(0)

i z
)

J1

(
δ(0)

i r
)
sin

(
k(0)

i z
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.6)

and the particular solution is

vpart. = (0, 0, 2irei(ωt+ϕ), 0). (2.7)

In the following, u(0)

i , v(0)

i , w(0)

i and p(0)

i denote the four components of v(0)

i . The amplitude
a(0)

i of each Kelvin mode is given by

a(0)

i =
4ω2

(ω − 2)
(
k(0)

i

2
+ 1

)
k(0)

i J1

(
δ(0)

i

)
cos

(
k(0)

i h
) , (2.8)

where h = H/2Rc. The radial wavenumber δ(0)

i satisfies the Kelvin’s relation

ωδ(0)

i J ′
1

(
δ(0)

i

)
+ 2J1

(
δ(0)

i

)
= 0, with |ω| < 2 (2.9)

and the axial wavenumber k(0)

i the constitutive relation

δ(0)

i

2
=

4 − ω2

ω2
k(0)

i

2
. (2.10)

The first four Kelvin branches corresponding to the dispersion relation (2.9) and (2.10)
are plotted in figure 2(a). As shown by the expression (2.8), the amplitude a(0)

i of each
Kelvin mode diverges (see figure 2b) for an infinity of wavenumbers kn = π(2n−1)/2h

(with n a non-zero integer) for which the quantity cos(k(0)

i h) = 0. Thus, in the range
[−2, 2], a double infinity of resonant frequencies ωi,n is obtained by considering on
each branch the frequencies for which k(0)

i = kn. Note that the expression (2.8) does
not hold any longer for ω in a close vicinity of any ωi,n, where Gans’ expression of
viscously saturated amplitude proved to be more relevant.
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Figure 2. Inviscid theory for a precessing cylinder full of fluid (Rc = 0.33 m, H = 0.1 m).
(a) Kelvin’s relation of dispersion. Only the first four branches are plotted: i = 1 (solid), i = 2
(dotted), i = 3 (dashed) and i = 4 (dot-dashed). (b) Amplitude of the first two Kelvin modes
given by the inviscid theory: i = 1 (solid) and i = 2 (dotted). Numerical simulations presented
in § 4 are performed around the first resonance of the first mode ω1,1 = 0.605.

2.3. Coupled dynamics formulation and Milne–Stewartson theory

Since the only torque acting on the solid part of the gyroscope comes from the
hydrodynamic stress, one can write

d JΩ

dt
= M, (2.11)

where J is the inertial tensor (which is diagonal in Rφ), and M the hydrodynamic
torque resulting from the integration of hydrodynamic constraints on the cavity walls.
In (2.11), the time derivative is considered in R0. Projecting (2.11) on the xα- and
yα-axis leads to the system

A α̈ + C Ω β̇ = Mxα
, (2.12a)

A β̈ − C Ω α̇ = Myα
, (2.12b)

where A and C respectively denote the transverse and lengthwise inertia momenta of
the solid part of the gyroscope (J =[A, A, C] in Rφ). Equation (2.12) is equivalent to
the more convenient form

Aζ̈ − iCΩζ̇ = Myα
− iMxα

, (2.13)

where ζ = β − iα is the complex angular variable. In the linearized equations (2.12)
and (2.13), quadratic terms involving α, β and their time derivatives are neglected
owing to the assumption α, β � 1, which is required for consistency with the earlier
assumption of small coning angles. For an empty cavity (M = 0), the solid describes
the classic precessional Poinsot’s motion for which the axis k̂ generates a cone of a
fixed half-angle θ at the angular velocity Ω2 = (C/A) Ω . In this case ζ = θ exp(i Ω2 T ),
Ω2 being a real number. In the general case of a fluid-filled cavity, ζ is to be sought
in the same form, but with Ω2 in the complex domain. The characteristic time of
aperture of the coning angle then equals [Im(Ω2)]

−1.
Following Stewartson (1958), we first consider in M the only contribution M (0)

of the inviscid flow (2.5). M (0), which results from the integration of p(0) over the
cavity walls, can be written in the reference frame Rα as a function of ω and the
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dimensionless precession frequency s =Ω2/Ω . We obtain

M (0) = ρεΩ2R5
c

[
m(0) + 2πh (1 − ω)

(
h2

3
− 1

4

)]
ei st [ y

α
+ i xα], (2.14)

where

m(0) = 2π
∞∑

i=1

a(0)

i

[
J2

(
δ(0)

i

)
δ(0)

i

sin
(
k(0)

i h
)

−
J1

(
δ(0)

i

)
k(0)

i

2

[
sin

(
k(0)

i h
)

−
(
k(0)

i h
)
cos

(
k(0)

i h
)]]

(2.15)

is O(1). Let us now consider a unique resonant frequency ω0 among the double infinity
of ωi,n. We assume ω0 is far enough from any other main hydrodynamic resonance.
The relevance of this assumption is partially ensured by the viscous criterion of
viability established by Gans (1970). Gans’ inequality δ(0)

i < Re1/7 stipulates that for
a given Reynolds number, the Kelvin modes of high radial wavenumbers cannot
be forced due to the viscous effects. For sufficiently low Reynolds numbers, this
condition is likely to drastically reduce the density of resonances in the vicinity of
ω0. Considering the values of Re used in the present paper, the resonance ω0 = ω1,1

(which is examined further) will be regarded as isolated, but such a verification must
be performed in each particular case.

So, the main diverging term is therefore kept in the Laurent’s expansion of the
involved Kelvin mode, namely,

m(0) � D(0)

ω0 − ω
. (2.16)

The expression of D(0) is given in Appendix A. Using the previous expression of m(0)

and the general form ζ = θ exp(i st) in (2.13), we can rewrite the latter as a polynomial
equation of variable s

−s + σ = κ
D(0)

s − s0

, (2.17)

where

σ = C/A′, κ = ρR5
c /A

′, s0 = 1 − ω0 and A′ = A + 2π

(
h2

3
− 1

4

)
. (2.18)

To derive (2.17), it is recalled that the case of small coning angles is considered, for
which the approximations s � 1 − ω and ε � θ s are valid. Moreover, the assumption
of quasi-staticity of the coning angle θ is supposed to be satisfied, namely, θ̇ � θΩ2

at any time. Actually, in the coupled situation, the part of the term dΩ/dT in (2.1a)
coming from the variation of the nutation angle θ (recall that θ̇ =0 in the forced
regime), must be negligible compared to the one coming from the precession. This
condition, which can be rewritten Im(s)/Re(s) � 1, defines the limit of use of the
flow (2.5) in a situation in which θ is free to evolve. In other words, (2.17) is valid for
complex values of s, as long as Im(s) � Re(s).
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Figure 3. Criterion of validity for corrected Stewartson’s theories. In these plots, we used
κ = 0.003, D(0) = 0.9493 and ε = 0.009. (a) Imaginary part of s as a function of the inertial
ratio σ . (b) inviscid (solid) and viscous (dashed) amplitudes of the Kelvin mode. The criterion
of applicability (2.21) characterizes the width of the inviscid unstable domain (Stewartson’s
theory for the coupled problem) compared to the width of the hydrodynamic viscous domain.

The physically acceptable solution to (2.17) depends on the range in which the
inertia ratio σ lies

s =
1

2

[
(σ + s0) − i[4κD(0) − (σ − s0)

2]1/2
]

for |σ − s0| < 2
√

κD(0), (2.19a)

s =
1

2

[
(σ + s0) − [(σ − s0)

2 − 4κD(0)]1/2
]

for σ < s0 − 2
√

κD(0), (2.19b)

s =
1

2

[
(σ + s0) + [(σ − s0)

2 − 4κD(0)]1/2
]

for σ > s0 + 2
√

κD(0). (2.19c)

All the previous results have been established by Milne (1940) and Stewartson
(1958), for the case of spheroidal and cylindrical cavities, respectively. The reduced
growth rate Im(s) is plotted as a function of the inertia ratio σ in figure 3(a). As
shown in the plot, inertial effects at Re = ∞ make the fluid-filled gyroscope unstable
in a range of width 4

√
κD(0) around s0. The maximum rate of divergence is

√
κD(0).

2.4. Criterion of applicability for corrected Stewartson’s theories

As the main objective of the paper is to extend rigorously Stewartson’s inviscid theory
to the case of a viscous liquid, we have to figure out in which case (i.e. for which set of
physical parameters) such an approach can be adopted (rather than Gans’ approach).

First, the point is to evaluate the width �ω of the Gans’ ‘window’, that is to say the
range of forcing frequency in which the amplitude of the main flow is saturated by
the viscous effects. Based on Meunier’s modified Gans’ theory (Meunier 2008), one
can show that the inviscid solution (2.5) is not valid anymore, as soon as the forcing
frequency lies in a domain of width

�ω ∼ ε a(0)f −1max[|μ|, εν] (2.20)

around the resonance. Details of the derivation of the previous expression are given
in Appendix B. In (2.20), μ, ν and f are the surface and volume viscous parameters
and the forcing parameter derived by Meunier et al. (2008), the expressions of which
are also reminded in Appendix B. The expression of a(0) is given in Appendix A (the
subscript ‘i’ has been removed since there is no ambiguity about the resonance).
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Thus, for a forcing frequency of width �ω around ω0, the inviscid solution is
diverging, which makes any corrective approach irrelevant. It therefore appears
natural to expect any Stewarton’s corrected approach to be of interest provided
the inviscid unstable domain (of width ∼

√
κD(0)) is wider than the range of viscous

saturation �ω, namely (see figure 3),

√
κ > ε

a(0)

2
√

D(0)f
max[|μ|, εν]. (2.21)

In (2.21) constitutes a (sufficient) criterion of applicability of the theory presented in
the next section. In other words, (2.21) tells us if there is or not a domain where
Stewartson’s corrected theories are relevant. However, (2.21) does not tell us in which
domain of forcing frequency these theories can be used. Actually, for the theory
presented in the next section to apply, the forcing frequency ω must stand outside the
Gans’ window, namely,

|ω − ω0| > �ω. (2.22)

The previous inequality can be rewritten using the inertia parameter σ = C/A′ and
considering that σ � Re(s) � 1 − ω,

|1 − σ − ω0| > �ω. (2.23)

This previous criterion of validity characterizes the corrected inertial regime, that is
to say the domain of forcing frequency in which the Stewartson’s corrected theories
apply.

3. Treatment of viscous effects in the corrected inertial regime
The pressure torque calculated from the inviscid solution becomes destabilizing

in a domain of frequency of width 4
√

κD(0) around ω0. Nonetheless, experiments
performed by Karpov (1962, 1965) with real liquids clearly show a non-zero growth
rate outside the inviscid unstable domain. Unlike Wedemeyer, we present in the next
section a direct calculation of the viscous corrections responsible for instance of such
a broadening of the unstable region. The connection with Wedemeyer’s theoretical
results is made afterwards.

In the inertial coupling limit, the global velocity–pressure field is sought in the form
of a double ε-expansion v = vout + vin with

vout = v(0) + ε v(1) + O(ε2) in the bulk, (3.1a)

vin = ṽ(0) + ε ṽ(1) + O(ε2) inside the boundary layer. (3.1b)

In addition, the condition vin = 0 outside the boundary layer is required.

3.1. Viscous and pressure torques

Before going further, the relative orders of magnitude of the torques must be discussed.
Quantities with dimension are therefore considered to the end of this paragraph. A
hydrodynamic torque corresponds to each term of the previous expansions. Thus, M (0),
which intervenes in Stewartson’s theory, results from the integration of the pressure

at leading order in bulk over the cavity walls. In the following, M̃
(0)

notes the torque

due to the viscous shear at leading order, M (1) and M̃
(1)

designate the torques resulting
from integration of the pressures at order ε outside and inside the boundary layer,
respectively. Note that the torque resulting from the pressure at leading order in the
boundary layer is always zero (see Appendix C).
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As shown by (2.14), M (0) is of the same order of magnitude as the scaling factor

ρεΩ2R5
c whereas M̃

(0)

proves to be one order greater in ε, that is M̃
(0)

∼ εM (0).
Indeed, as the viscous constraint at leading order is of order με−1εΩ , the order of
magnitude of the corresponding torque is με−1εΩR3

c = ρεεΩ2R5
c . Generally, it can

be shown that the shear torque M̃
(q)

calculated at a given order εq in velocity is of
the order εM (q), where M (q) is the torque calculated at the same order εq in pressure.

Consequently, taking account only of the torque M̃
(0)

for the coupling as Murphy

(1982) is altogether questionable, the pressure torques M (1) and M̃
(1)

being of the same
order. This also means that the pressures at order ε inside and outside the boundary
layer must be derived explicitely. As shown in § 3.4, the main contribution of the
viscous destabilization comes from the torque M (1).

3.2. Flows at leading order and order ε

In principle, a direct integration of the NS equations could lead to the expression of
the flow at order ε in bulk. However, to avoid such a tedious pathway, it can be seen
that both flows at leading order and at order ε satisfy the same inviscid NS equations
in bulk (if we forget the forcing term). This suggests seeking v(1) by expanding the
radial and lengthwise wavenumbers δi = δ(0)

i + εδ(1)

i and ki = k(0)

i + εk(1)

i in a global field
vout of the same shape as the inviscid solution v(0).

As we will see further, this is not sufficient to satisfy the boundary conditions at
order ε on top and bottom walls. The solution is to complete the ε-expanded flow
by an additional flow ‘parallel’ to v(0) (same shape, same wavenumbers δ(0)

i and k(0)

i ,
but different amplitudes a+

i of the Kelvin modes). Note that doing this is equivalent
to expanding the amplitude in the flow vout . This extra flow does not disturb the
boundary condition on the lateral wall but permits the normal velocity at order ε to
equal the Ekman pumping on the top and bottom wall.

Consequently, the flow in the bulk vout can be written as

vout = v(0) + ε

∞∑
i=1

[
a+

i v(0)

i + a(0)

i

(
δ(1)

i

∂v(0)

i

∂δi

+ k(1)

i

∂v(0)

i

∂ki

)]
ei(ωt+ϕ) + O(ε2), (3.2)

where all the partial derivatives are considered at (δ(0)

i , k(0)

i ). The amplitudes a(0)

i are
still unknown at this stage.

The shape of the velocity–pressure field is fixed by the previous equation in which
the unknown quantities δ(1)

i and k(1)

i must be determined in order to satisfy the
boundary conditions at order ε. In practice, the normal component of the velocity
at order ε in bulk must equal the Ekman pumping at the wall, which results from
the non-homogeneity of the corrective viscous flow in the boundary layer (see e.g.
Waleffe 1989).

3.2.1. Leading order

We shall not revert to the resolution of the inviscid flow v(0) given in § 2.2. At this
stage, the amplitudes a(0)

i are fixed by the inviscid boundary condition of tangential
velocity at the walls. The classical derivation of the corrective viscous flow ṽ(0) is given
in Appendix C.

3.2.2. Order ε

The expressions of the normal Ekman components u⊥
i e

i(ωt+ϕ) (on the lateral wall)
and w⊥

i e
i(ωt+ϕ) (on the top and bottom walls) arising from the i th Kelvin mode are

also given in Appendix C. The boundary condition at order ε applied to the flow
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given by (3.2) for a unique Kelvin mode

a(0)

i δ(1)

i

∂u(0)

i

∂δi

= u⊥
i at r = 1 (3.3)

leads to the expression of δ(1)

i (see again Appendix C for details):

δ(1)

i =
1 − i√

2ω
δ(0)

i . (3.4)

Once the expression of δ(1)

i has been established, the correction to the lenghtwise
wavenumber k(1)

i is fixed by the constituting relation (2.10) (which is also valid at
order ε) and can not be freely chosen to satisfy the boundary conditions at order ε

on top and bottom walls. Indeed, as the global field vout is a solution of the inviscid
NS equation, the quantities δ(0)

i + εδ(1)

i and k(0)

i + εk(1)

i are connected by the constituting
relation [

δ(0)

i + εδ(1)

i

]2
=

4 − ω2

ω2

[
k(0)

i + εk(1)

i

]2
, (3.5)

which involves

δ(1)

i

2
=

4 − ω2

ω2
k(1)

i

2
. (3.6)

Due to this lack of available ‘degree of freedom’, the introduction of the extra flows
a+

i v(0)

i turns to be indispensable in order to properly compensate the Ekman pumping
on top and bottom walls.

So, at the top and bottom walls, we have

a(0)

i

[
δ(1)

i

∂w(0)

i

∂δi

+ k(1)

i

∂w(0)

i

∂ki

]
+ a+

i w(0)

i = w⊥
i for z = ±h. (3.7)

The calculation of the amplitudes a+

i of the Kelvin modes in the additional flow is
exhaustively presented in Appendix D. Thus, the boundary conditions at every wall
are satisfied, and we finally get the pressure related to the flow in the bulk at order ε:

p(1) =

∞∑
i=1

a(0)

i

[
δ(1)

i

∂p(0)

i

∂δi

+ k(1)

i

∂p(0)

i

∂ki

]
ei(ωt+ϕ) +

∞∑
i=1

a+

i p(0)

i ei(ωt+ϕ). (3.8)

The pressure p̃(1) in the boundary layer can be directly obtained by integrating the
systems of equations (C 1a) and (C 1b) given in Appendix C. The expression of p̃(1) is
given in Appendix E.

3.3. Coupled dynamics

The new equation of coupling takes the following form:

−s + σ = κ[m(0) + ε(m̃(0) + m(1) + m̃(1))]. (3.9)

The expressions of the complex torques m(1), m̃(1) and m̃(0) are collated in Appendix E.
As specified above, these torques result from the integration of p(1), p̃(1) and the viscous
stress related to ũ(0), respectively.

Following again Stewartson (inviscid coupling), each torque can be replaced by its
Laurent’s expansion. In this case, expansions are truncated after the last diverging
term. For instance, the torques m̃(0) and m̃(1), which only contain poles of order 1, can
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(i, n) ωi,n D̃
(0)
R D̃(0)

I D̃
(1)
R D̃

(1)
I C

(1)
R C

(1)
I D

(1)
R D

(1)
I

(1, 1) 0.6047 −1.6326 1.3488 5.0075 5.0075 0.2676 1.2304 −4.7988 −1.6445
(1, 2) 1.4961 −0.7388 1.3982 0.0616 0.0616 0.01 −0.1489 1.0049 3.4896
(2, 1) 0.3026 −0.1572 0.1166 1.4323 1.4323 0.0368 0.1481 −1.6148 −1.1687
(2, 2) 0.8922 −0.0497 0.1944 0.0227 0.0277 0.0005 0.0031 0.1867 0.5526

Table 1. Coefficients of Laurent’s expansion of the torques at order ε evaluated at the first
two resonances modes of the first two Kelvin modes i = 1 and i = 2, for a cylinder of aspect
ratio h = 1.65.

be written as

m̃(0) =
D̃(0)

R

s − s0

+ i
D̃(0)

I

s − s0

, (3.10a)

m̃(1) =
D̃(1)

R

s − s0

+ i
D̃(1)

I

s − s0

. (3.10b)

Expressions of the real quantities D̃(0)

R
, D̃(0)

I
, D̃(1)

R
and D̃(1)

I
are collated in Appendix E.

As for the torque m(1), which contains poles of order 1 and 2, it can be written in the
form

m(1) =

[
C (1)

R

(s − s0)2
+

D(1)

R

s − s0

]
+ i

[
C (1)

I

(s − s0)2
+

D(1)

I

s − s0

]
. (3.11)

Expressions of the real quantities C (1)

R
, C (1)

I
are also given in Appendix E. Tedious

expressions of the real quantities D(1)

R
and D(1)

I
are not given exhaustively in the paper,

but their values for the first two resonances of the Kelvin modes i = 1 and i = 2 for
a cylinder of aspect ratio h =1.65 are given in table 1.

At order ε, (3.9) is equivalent to

−s + σ = κ

[
D(0) + ε (DR + iDI )

s − [s0 + ε(sR + i sI )]

]
, (3.12)

where

DR = D̃(0)

R
+ D̃(1)

R
+ D(1)

R
, (3.13a)

DI = D̃(0)

I
+ D̃(1)

I
+ D(1)

I
, (3.13b)

sR = C (1)

R
/D(0), (3.13c)

sI = C (1)

I
/D(0). (3.13d)

3.4. Comparison with Wedemeyer’s approach

Equation (3.12) makes the connection with Wedemeyer’s theory. Indeed, Wedemeyer’s
characteristic equation of coupling (given for example in Whiting & Gerber 1981) is
formally almost identical to (3.12) where DR and DI are set to zero. The difference
comes from the important fact that Wedemeyer’s method only takes into account the
effects linked to the Ekman pumping, namely, the quantities sR and sI in (3.12). The
viscous shear torque m̃(0), the pressure torque m̃(1) are not considered in Wedemeyer’s
approach. Thus, if the contribution ε(DR +iDI ) is small compared to D(0), Wedemeyer’s
and the present theory are very close to each other, as shown in figure 4(a). They
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Figure 4. (a) Comparison of the present theory (solid line) with Wedemeyer’s (dashed line)
for the case II presented in the numerical section. Wedemeyer’s and uncomplete present theory
(obtained by taking DR , DI = 0) are superimposed. (b) D(0) plotted as a function of the aspect
ratio h for the first (solid line) and second (dashed line) of the first Kelvin mode. For the first
(resp. second) resonance, D(0) = 0 at h =0.995 (resp. h = 2.985).

are completely superimposed if this quantity is neglected. When not negligible with
respect to D(0), the quantity ε(DR +iDI ) is responsible for a possible asymmetry of the
viscous tails.

Figure 4(b) plots the inviscid coupling coefficient D(0) as a function of the aspect
ratio h, for the first and second resonance of the first Kelvin mode, namely, ω1,1 and
ω1,2. For each resonance, D(0) cancels out at a given aspect ratio (h = 0.995 for the
first resonance and h = 2.985 for the second resonance). For such aspect ratios, the
respective weights of D(0) and ε(DR + iDI ) are inverted and Wedemeyer’s theory is no
longer suitable. Moreover, in a really close vicinity of these singular values, Laurent’s
expansions are not strictly valid either and must be taken one order further. Such
a marginal treatment will be presented in a forthcoming communication. Note that
most of the experimental studies for full cavities without an internal rod (see e.g.
D’Amico 1977, 1981 and Whiting & Gerber 1981) have been performed for h = 1 and
h = 3.

4. Numerical study
In this section, we present numerical studies performed in order to check the validity

of the theoretical results reported in the previous section. The first part addresses the
general features of the fluid dynamics code that is used in this study. In this part, the
numerical coupling between the NS equations and the container dynamics is briefly
presented. The second part deals with the numerical results. We first present results
related to the hydrodynamic flow in a forced regime (for which the kinematics of the
container are fixed). Numerical results for the fluid-structure coupled dynamics are
detailed afterwards. Numerical studies in forced and coupled regimes are made for a
cavity of fixed aspect ratio h = 1.65 (heigth H = 0.33 m and radius Rc = 0.1 m). Ω is
equal to 2π rad s−1 and the viscosity is varied to change the Reynolds number. The
lengthwise inertia A is varied to change the fluid/solid inertia ratio. We focus on the
first resonance of the first mode (ω1,1 = 0.605) for which the criterion of applicability
can be written in the simpler form

√
κ/ε < 1, the rest of the right member of (2.21)

being of order 1 in this case.
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Figure 5. Axial component of the real velocity field on a horizontal plane located at zφ = 0 in

forced regime. Numerical values of the legend are given in m s−1. The velocity field presented
above corresponds to the following physical parameters: Ω = 2π rad s−1, Ω2 = 3.016 rad s−1,
R = 0.1 m, H = 0.33 m, μ= 5 10−3 Pa s and ρ = 103 kg m−3. The dimensionless frequency, the
Reynolds number and the nonlinear parameter are respectively ω = 0.520, Re = 12566 and
ε = 1.6 10−3. (a) Numerical field given at time T =40 s. The transient stage is almost finished
and lateral boundary layers are visible. (b) Analytical inviscid solution.

4.1. Numerical schemes and parameters

4.1.1. Hydrodynamics

NS equations (2.1a) and (2.1b) are solved by means of an augmented Lagrangian
method (Fortin & Glowinski 1982; Vincent & Caltagirone 2000). Equations of motion
for the fluid are discretized with a finite volumes method on fixed staggered orthogonal
cylindrical grids of type Maker And Cells (Harlow & Welsh 1965). To discretize the
differential form (2.1a), a second-order Euler scheme is used for the time derivative.
The viscous and augmented Lagrangian terms are discretized thanks to a second-
order centred scheme. The resulting linear systems are solved using a Bi-CGSTAB
II iterative method (van der Vorst 1992), preconditioned under a modified and
incomplete LU algorithm. A fully implicit order 2 integration scheme is used to
perform time integration. A space and time convergence analysis guarantees the
quality of the results. An example of numerical velocity field is presented in figure 5.

4.1.2. Fluid-structure coupling

In the numerical calculations, the NS equations (2.1) are solved without any
simplification. Calculation of complementary inertial terms shown in (2.1a) requires
the evaluation of Ω , the Cartesian coordinates of which are Ωxφ

, Ωyφ
and Ωzφ

, in the
reference frame Rφ . The rotation vector is obtained by numerical integration of the
equations of motion for the solid. As the latter undergoes the hydrodynamic torque
only, the evolution of its angular momentum takes the following form:

Ω̇xφ
= (1 − C/A) Ωyφ

Ωzφ
+ Mxφ

/A, (4.1a)

Ω̇yφ
= (C/A − 1) Ωzφ

Ωxφ
+ Myφ

/A, (4.1b)

Ω̇zφ
= Mzφ

/C. (4.1c)

The coupled problem is thus ruled by (2.1) and (4.1). The coupling between the
NS equations and the equations of motion of the solid is performed thanks to a
time splitting method: at the current time step, the NS equations are solved using
the coordinates of Ω obtained at the previous step. The hydrodynamic torque M
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is computed by numerical integration of pressure and shear stress evaluated at the
walls of the container. An Adams–Bashforth integration method of order 4 is used
to perform the time integration of (4.1). This integration allows the update of Ω and
complementary acceleration terms in (2.1a) for the next step and so on.

4.2. Numerical results and comparison with theory

4.2.1. Convergence analysis and forced regime

The purpose of the studies in a forced regime is firstly to make a time and space
convergence analysis, secondly to compare the amplitudes of the torque M (1) with
the theoretical prediction. It is in fact known that this quantity rules the process of
destabilization far from the hydrodynamic resonance.

Only the space convergence analysis performed for a Reynolds number Re = 12566
is presented, that is for the following fluid parameters ρ =103 kg m−3 and μ =0.005
Pa s. The precession velocity chosen to make the analysis is Ω2 = 1.508 rad s−1.
The corresponding dimensionless forcing frequency ω = 0.520 is located far from
the resonance ω1,1 = 0.605. As the main point of interest (regarding stability) is the
component of the hydrodynamic torque Myθ

, This quantity is used as the performance
parameter in convergence analysis. Initially, the system is supposed to be in rigid
rotation around the z0 axis (θ = 0). At T =0, the system is instantaneously tilted
towards a fixed coning angle θ = 0.1 and the flow slowly relaxes to a stationary state
in the reference frame Rθ . To accurately take account of viscous effects, the boundary
layers are meshed with cells of exponentially increasing size. A constant radial size
is used to mesh the bulk. The characteristics of each mesh are given below in the
form number of radial divisions × number of azimutal division × number of lengthwise
divisions (number of cells in the boundary layers). The four main grids used in the
convergence study at Re = 12566 are the following: 62×80×132 (8), 50×64×104 (8),
40 × 50 × 82 (6), 32 × 40 × 64 (5). When meshing, the characteristic size (2ν/Ω)1/2

is considered to be representative of the boundary layer thickness, which is not
entirely relevant since there are two different characteristic lengths for the top and
bottom boundary layers (see expressions (C 8)). Besides, the number of cells in the
boundary layer may appear insufficient to accurately capture the corrective flow but
the comparison of analytic and numerical shear stresses shows a good agreement
even with only five cells in the thickness. For this sole study, a time step of 2×10−3 s
is used. Nevertheless, as the calculations are very time consuming, the stationary state
has to be estimated before the extinction of the transient stage. To do so, we exploit
the fact that the behaviour of the perturbed state is an exponentially damped sinus
superimposed on a linear component. A convergence curve in space is presented
in figure 6(a) in log-lin coordinates. The fit used to make the extrapolation to the
smallest time steps is obtained by a Richardson’s method.

In the time convergence analysis, the mesh 50×64×104(8) is selected and the same
set of physical parameters as in the space convergence analysis presented above are
used. A first computation is performed with a rough time step of 4×10−3 s until a
nearly stationary regime in Rθ is reached. Then, a computation is made with smaller
time steps until new converged values are obtained and so on. A time convergence
curve is presented in figure 6(b) in lin-log coordinates. A power law is used for the
extrapolation to the smallest time steps.

The conclusions related to the time and space convergence analysis are as follows:
for low viscosities (μ = 0.001 Pa s) a grid 50×64×104 (8) is adopted; for intermediate
(μ = 0.005 Pa s) and high viscosities (μ = 0.01 Pa s), a coarser 50 × 64 × 64 (6) grid is
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Figure 6. Convergence study in forced regime. (a) Space convergence: yθ component of the
hydrodynamic torque (after stabilization) as a function of the number of cells. (b) Time
convergence: yθ component of the hydrodynamic torque (after stabilization) as a function of
the time step. Richardson’s extrapolation is plotted in solid line. Numerical values are plotted
in solid circles.
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Figure 7. Hydrodynamic torque at order ε. (a) yθ component of the numerical pressure torque

(closed circle). Component of the theoretical torque M̃
(1)

+ M (1) in the yθ direction is plotted in
solid line. (b) Components of the numerical shear torque in the xθ direction (open circles) and

yθ direction (closed circles). Corresponding theoretical components M̃ (0)

xθ
and M̃ (0)

yθ
are plotted

in dashed and solid lines, respectively. Mesh and physical parameters are the same as in the
time convergence study (see text).

used. All studies are performed with a time step of 10−3 s, which seems to be a good
compromise between precision and CPU calculation time.

The hydrodynamic torque at order ε must now be addressed. Numerical experiments
enable to make the distinction between pressure and shear contributions to the
hydrodynamic torque. These contributions are noted Mpress and Mvisc respectively.
The configuration chosen (meshing and physical parameters) is the same as that
used for the time convergence study. The yθ component of the pressure torque as a
function of the forcing frequency ω is presented in figure 7(a) and both components
of the shear torque are presented in figure 7(b). The forcing pulsation ω lies in the
range [0.4, 0.8] which corresponds to the domain explored in the free coupling study
(§ 4.2.2). Agreement between numerics and theory is good for the xθ components
of the viscous torques. In the yθ direction, the discrepancies for both pressure and
viscous torques are greater on the right side of the resonance than on the left. This
observation remains unexplained for the moment.
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case A (kgm2) ρ (kgm−3) μ (Pa s) Re κ
√

κ/ε

I 5 1500 10−3 94247 3.0 10−3 16.8
II 10 1000 5.0 10−3 12566 9.36 10−4 3.40

III 100 1000 10−2 6280 10−4 0.79

Table 2. Physical parameters for each case. κ and Re are given for information.
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Figure 8. Coning angle (in degrees) as a function of the real time T for case I. (a) Outside
the inviscid unstable domain, initial flow relaxes through damped oscillations. The solid
line corresponds to σ = 0.56. The fitting curve is plotted in dashed line. (b) Non-oscillating
relaxation of the transcient stage. For σ = 0.40 (solid line), the evolution of the coning angle
is exponential from 0.1 to about 5 and the growth rate can be evaluated without further
interpretation. For σ = 0.3 (dashed line) the evolution is not straightforwardly exponential.

4.2.2. Coupled regime

Three numerical experiments (noted I, II, III) located in the corrected inertial
regime are presented below. Initial conditions are the same as in the forced regime
but the coning angle is free to evolve under the influence of the hydrodynamic torque.
As stated in the first lines of the section, the geometry of the container and the value
of Ω = 2π rad s−1 is the same for every case. The parameters varying from a case to
another are collated in table 2. The ratio

√
κ/ε, which is supposed to be greater than

1 for the present theory to be usable, is given in the last column. We notice that the
third case stands at the edge of the domain of applicability of the present theory.

The configuration I is located in the inertial field since
√

κ/ε 
 1. In principle, the
growth rate of the coning angle Im(s) (plotted as a function of ω in figures 9–11)
should have been obtained from numerical calculations by a simple estimation of
the quantity d ln[θ(T )]/dT in the very first seconds of destabilization. Unfortunately,
the transient stage evolves through either oscillating or non-oscillating decay, as
illustrated in figure 8. Decaying oscillations correspond to situations in which the
viscous effects are predominant (outside the inviscid unstable regime). In this case,
estimation of the growth rate is given by assuming that the shape of ln[θ(T )] results
from the superposition of a linear term and an exponentially damped cosine. Such
an identification process provides an accurate value of the growth rate Im(s). As
we leave the viscously dominated region to enter the inviscid unstable domain, the
identification of any possible linear regime proves to be difficult. The value chosen for
Im(s) is given by the slope of ln[θ(T )] averaged over the period [T = 10 s, T = 20 s].
Uncertainty on the growth rate is then given by the minimum and maximum values
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Figure 9. Stability curve for case I – κ = 3.0 10−3, Re = 94247. (a) The present viscous
theory is plotted in solid line. The dashed line corresponds to the inviscid Stewartson’s theory.
The numerical results are plotted in closed circles. (b) Details of the stability curve in the
domain where the viscous effects are predominant.

of the slope encountered on the same interval of time. As we move closer to the
region for which Im(s) plotted as a function of σ is the stiffest (see figure 9a), a
characteristic linear evolution can be clearly identified as shown in figure 8(b). For
large coning angles (θ ∼ 5), temporal evolution of ln[θ(T )] is no longer linear. This
kind of behaviour, which could be the indirect signature of nonlinear phenomena
such as Lagrange’s triadic instability (Lagrange 2008), has been observed in Karpov’s
experimental data (Karpov 1965). In figure 9(a), the agreement between numerical
and theoretical growth rates is good. The bell-shaped curve corresponding to the
present theory is fairly close to the numerical data. As for the quantity max[Im(s)],
the decay as well as the shift in σ observed for the numerical results (in comparison
with the inviscid case) are properly calculated. Moreover, the viscous broadening
observed on the numerical results outside the inviscid unstable domain of σ (i.e. the
appearance of right and left viscous tails on the stability curve) is well predicted.
However a zoom performed on the right (resp. left) viscous tail of the stability curve
(figure 9b) highlights a slight but systematic underestimation (resp. overestimation)
of the numerical growth rate. As shown below, this tendency is also noticeable for
cases II and III.

The configuration II is also located in the inertial regime since
√

κ/ε =3.4. Most of
the comments related to the first case are still valid. The stability curves are presented
in figure 10(a). As in the previous case, the agreement between the present theory and
the numerical results is satisfactory. The physically acceptable solutions of the third-
order polynomial equation (3.9) are also plotted in figure 10(a). The comparison of
the latter with the solutions of the second-order polynomial equation (3.12) illustrates
the order of magnitude of the error made by approximating (3.9) by (3.12). As shown
in figure 10(a), the third-order equation does not permit a precise determination
of the shift of max[Im(s)] since ε-expansions no longer hold in the vicinity of the
hydrodynamic resonance. In figure 10(a), the identification of max[Im(s)] (and the
corresponding σ ) becomes possible due to the ‘smoothing’ of the approximate form
(3.12). This means that the value of the resonant inertial ratio (given by s0 + εsR)
must be considered cautiously. The situation is different in configuration I, for which
both approaches give almost the same results. In figure 9(a), the corresponding curves
would be superimposed. Note that the value of max[Im(s)] is slightly underestimated
by 3 %–4 %.
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Figure 10. Stability curve – case II, κ = 9.36 10−4, Re = 12566. (a) The viscous theory (defined
in (3.12)) is plotted in solid line. The dashed line corresponds to Stewartson’s inviscid theory.
The dot-dashed line has been obtained by solving directly the third-order characteristic
equation (3.9). The numerical results are plotted in solid circles. (b) Detailed views of the
stability curve in the domains where the viscous effects are predominant. On these views the
dotted curve has been obtained by selecting only the shear torque m̃(0) in the derivation of
the theoretical stability curve.

0.30 0.35 0.40 0.45 0.50

5 × 10–3

6 × 10–2

4 × 10–2

2 × 10–2

4 × 10–3

3 × 10–3

2 × 10–3

1 × 10–3

0.30 0.35 0.40 0.45 0.50
σ

Im
(s

)

(b)(a)

σ

Figure 11. Stability curve – case III, κ = 10−4, Re = 6280. (a) The present viscous theory
(defined in (3.12)) is plotted in solid line. The viscous effects lead to a decrease and a shift of
the maximum growth rate compared to the inviscid theory (dashed line). The numerical results
are plotted in closed circles. (b) Rescaled view of (a) that points out the difference between
the amplitudes of inviscid and viscous theories.

In figure 10(b), the dotted curve has been obtained by selecting only the viscous
shear torque m̃(0) for the calculation of the stability curve. The destabilization effects
obtained outside the inviscid unstable domain are one order of magnitude smaller
than the effects obtained by numerical calculation. This latter observation stresses the
fact that, insofar as the dimensionless torque m(1) is predominant in the destabilization
process, taking account only of the viscous torque m̃(0) does not lead to a reasonable
value of the growth rate.

The third configuration, noted III, corresponds to an intermediate situation, between
the corrected inertial regime and the saturated viscous regime (

√
κ/ε = 0.79). The

results for case III are collated in figure 11. Although this last case is located at
the edge of the domain of validity of our theoretical results, the agreement between
theory and numerics remains quite good. The maximum value of the growth rate is
reasonably captured: the theoretical and numerical growth rates agree within 10 %.
However, some discrepancies are more pronounced than in cases I and II. For instance,
the shift of the maximum value of the growth rate is underestimated by a factor of
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2. This shortcoming is also slightly visible in figure 10(a) and can be explained as
follows: on coming closer to the viscous regime (

√
κ/ε → 1), the estimation of the

resonance shift deteriorates, since the hydrodynamics are ruled by Gans’ approach in
a wider domain. In the right-hand viscous tail of the stability curve, the growth rate
is overestimated of about 20 %–40 % in the considered range of σ , depending on the
distance from the resonance. Once again, this tendency, although it is less obvious,
can be observed for case I and II. Figure 10(b) illustrates the amplitude drop, which
is about one order of magnitude, when taking account of the viscous effects.

5. Discussion and conclusion
The problem of a completely fluid-filled gyroscope, in the particular case of a simple

cylindrical cavity, has been addressed. The whole work is valid at small coning angles,
where the nonlinear effects are negligible. The Reynolds number is supposed to be
high enough to allow for the boundary layer corrections. Moreover, the hydrodynamic
resonance of interest is supposed to be sufficiently distant from any other resonance.
This condition is satisfied as far as the Reynolds number is not too high, the threshold
being fixed by Gans’ criterion of viability δ(0)

i < Re1/7.
Firstly, Milne–Stewartson’s theory has been rewritten in a more convenient set

of reference frames. By comparing the width of the inviscid unstable domain
provided by Stewartson’s approach to the width of the saturated viscous regime
of the hydrodynamic flow studied by Gans (1970), a criterion is proposed for the
present theory to be relevant. The corrected inertial regime, which corresponds to high
values of κ , is treated theoretically and numerically. It has been shown that a direct
calculation of the flows at order ε (inside and outside the boundary layer) enabled

the evaluation of the destabilizing pressure torques M̃
(1)

and M (1). In the vicinity of
the resonant frequency, the latter behaves as a pole of order 2 (which is the leading
term of its Laurent’s expansion). It has also been shown that, when neglecting every
other corrections other than the pole of order 2 in M (1), the growth rate of the coning
angle obtained plotted as a function of the inertia ratio σ is exactly superimposed
on Wedemeyer’s result. This finding highlights the fact that the viscously induced
destabilization principally originates from the flow at order ε in bulk (namely, the
flow in volume corresponding to the Ekman pumping), rather than from the viscous
shear at walls. In most cases, the latter only intervenes as a correction that eventually
induces a slight asymmetry on the plots of Im(s) versus σ . The marginal situations in
which the viscous shear torque becomes predominant are not treated in the present
article.

Numerical calculations were performed for a cylindrical cavity of aspect ratio
h =1.65. We focused on the first resonance of the first mode (i = 1, n= 1) for which
the criterion of regime separation can be written in the simplified form

√
κ > ε. We

explored a relatively wide range of physical parameters, since for the three numerical
cases treated, the ratio

√
κ/ε varies from 0.79 to 16.8. Use of numerical studies

avoids certain experimental problems as bearing frictions and aerodynamic torques.
Theoretical prediction and numerical calculations of the maximum growth rate agree
to within 5 %–10 % depending on the case. As expected, agreement between numerics
and theory deteriorates as the ratio

√
κ/ε diminishes. The main problem concerns

the restitution of the shift of max[Im(s)] compared to the inviscid Stewartson’s value.
For

√
κ/ε close to 1, this quantity is underestimated by a factor of almost two. This

discrepancy is to be attributed to the irrelevance of the present theory in a very close
vicinity of the resonance.
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One restriction on the applicability of the present theory is that the resonance
considered must not be close to the value ω = 1. In this case, the value of the inviscid
quantity D(0) becomes very small and the constant term in the Laurent’s expansion
of m(0) can no longer be omitted. In other words, for a given aspect ratio h, the
resonances for which D(0) is close to zero cannot be treated by the present theory
and require certain refinements. The treatment of such singular resonances is still
incompleted and will be presented in a forthcoming communication. Most of the
experimental work has been performed in a close vicinity of singular resonances. For
instance, D’Amico’s experiments presented in Whiting’s paper (Whiting & Gerber
1981) are made at the second resonance of the first mode, which is singular for the
considered aspect ratio h ∼ 3. We expect that a better understanding of such marginal
situations could lead to improvements in the interpretation of several experimental
results already published.

Appendix A. Laurent’s expansion of the inviscid torque
Let us consider the expression (2.15) of m(0). The leading term in Laurent’s expansion

of the latter is obtained by seaking the leading term in Laurent’s expansion of a(0)

i ,
the term in brackets being considered at ω = ω0.

Laurent’s ω-expansion of a(0)

i truncated after the first (and only) diverging term is

a(0)

i � a(0)

i

ω0 − ω
, (A 1)

where

a(0)

i =
4ω2

0

(ω0 − 2)
(
k(0)

i

2
+ 1

)
k(0)

i J1

(
δ(0)

i

)
h sin

(
k(0)

i h
)
dk(0)

i /dω
. (A 2)

In (A 2), the wavenumbers δ(0)

i , k(0)

i and the derivative dk(0)

i /dω are considered at ω = ω0,
with

dk(0)

i

dω
=

ω0

k(0)

i (4 − ω2
0
)

[
δ(0)

i

2
+ k(0)

i

2
+ δ(0)

i ω0

dδ(0)

i

dω

]
(A 3)

and

dδ(0)

i

dω
= −

δ(0)

i J ′
1

(
δ(0)

i

)
(ω0 + 2)J ′

1

(
δ(0)

i

)
+ ω0δ

(0)

i J ′′
1

(
δ(0)

i

) . (A 4)

Coming back to the Laurent’s expansion of m(0), and knowing that cos(k(0)

i h) = 0 at
ω =ω0, we finally get

m(0) � D(0)

ω0 − ω
, (A 5)

with

D(0) = 2πa(0)

i

[
J2

(
δ(0)

i

)
/δ(0)

i − J1

(
δ(0)

i

)
/k(0)

i

2]
(A 6)

=
8πω2

0

[
J2

(
δ(0)

i

)
/δ(0)

i − J1

(
δ(0)

i

)
/k(0)

i

2]
(ω0 − 2)

(
k(0)

i

2
+ 1

)
k(0)

i J1

(
δ(0)

i

)
h dk(0)
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. (A 7)

Appendix B. Width of the Gans’ window – viscous and forcing parameters
From Meunier et al. (2008), Gans’ solvability condition yields to the following

equation for the (viscously saturated) amplitude A of a Kelvin mode forced close to
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its resonance

(μ + εν)A = if

(
1 − ε A

a(0)

i

)
. (B 1)

In (B 1), expressions of the viscous and forcing parameters μ, ν and f calculated by
Meunier et al. (2008) are

μ = − π

N
J 2

1

(
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i

)
{αi

[
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ν = δ(0)

i

2
+ k(0)
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2
, (B 3)

and

f =
4π

N
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where

αi =
1 + i√
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βi =
1 − i
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and
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From (B 1), the real part the viscously saturated amplitude can be calculated and one
gets

Re(A) = f
εf/a(0)

i + μ′′(
εf/a(0)

i + μ′′
)2

+ (μ′ + εν)2
. (B 8)

This quantity is supposed to become equal to the inviscid amplitude εa(0)

i as ω goes
away from the resonant frequency ω0. Thus, from (B 8), it appears that A can be
considered as equal to εa(0)

i provided that the second term of the denominator is small
compared to the first one. By using the Laurent’s expansion (A 1) of a(0)

i given in
Appendix A, we finally obtain an order of magnitude for the width �ω for the Gans’
window

�ω ∼ ε a(0)f −1max[|μ|, εν]. (B 9)

Appendix C. Corrections to the inviscid wavenumbers
C.1. Rescaled Navier–Stokes equations

Corrective flow at order 1 on the lateral wall obtained by performing viscous rescaling
r̃ = (1 − r)/ε in the complete linear NS equation (2.1a). Equivalent rescaling for the
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top wall is z̃ = (h − z)/ε. This couple of transformations leads to the following
systems:

lateral wall

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2ṽ (0) =
∂p̃ (1)

∂r̃
,

∂ṽ (0)

∂t
− ∂2ṽ (0)

∂2r̃
= 0,

∂w̃ (0)

∂t
− ∂2w̃ (0)

∂2r̃
= 0,

∂ũ (1)

∂r̃
=

∂ṽ (0)

∂ζ
+

∂w̃ (0)

∂z
,

upper wall

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ũ (0)

∂t
− ∂2ũ (0)

∂z̃2
− 2ṽ (0) = 0,

∂ṽ (0)
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∂ṽ (0)
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(C 1a,b)

C.2. Corrective flow at order 1 (boundary layer)

Normal corrective velocity ũ(0) and pressure p̃(0) are zero. The two tangential
components of ṽ(0), obtained from system (C 1a), are given by

ṽ (0) = −
∞∑

i=1

a(0)

i v(0)

i (1, z) e κl r̃ e i(ωt+ϕ), (C 2a)

w̃ (0) = i

[ ∞∑
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a(0)
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i (1, z) − 2

]
e κl r̃ e i(ωt+ϕ), (C 2b)

where

κl =
1 + i√

2

√
ω. (C 3)

Integration of the rescaled continuity equation at order 1 provides the Ekman pumping
component at the lateral wall (which is of order ε)

u⊥ =

∞∑
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i u⊥
i e
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Corresponding expressions to (C 2) for the upper wall come from the integration of
the system (C 1b). In this case

ũ (0) =
i

2
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i

[
S+

i (r)e κs z̃ + D+

i (r)e κd z̃
]
e i(ωt+ϕ), (C 6a)
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and
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√
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2
and κd = − (1 − i)
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2 − ω

2
(C 8a,b)
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Likewise, integration of the rescaled continuity equation at order 1 provides the
Ekman pumping component at the upper wall

w⊥ =

∞∑
i=1

a(0)

i w⊥
i e

i(ωt+ϕ), (C 9)

with
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C.3. Boundary condition at order ε on the lateral wall

The flow at order ε coming from ε-expansion of the wavenumbers in the inviscid
flow (term in brackets in (3.2)) is supposed to compensate the Ekman pumping given
by (C 4) and (C 5). Use of Kelvin’s relation of dispersion enables a simplification of
the derivatives of the normal velocity at r = 1
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i
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= 0. (C 11b)

The condition (3.3) then leads to the expression (3.4) of δ(1)

i . Given the constitutive
relation (3.6), the correction to the lengthwise wavenumber can be written

k(1)

i =
1 − i√

2

√
ω

4 − ω2
δ(0)

i . (C 12)

Appendix D. Amplitude of the additional flow
The amplitude a(0)

i is determined by means of the boundary condition (3.7) at
z = + h. Using the derivatives of w(0)

i with respect to δi and ki at r = 1, and replacing
in (3.7) each term by its expression, we obtain

i
∑

i

a(0)

i

1

ω

[
δ(1)

i k(0)

i rJ ′
1

(
δ(0)

i r
)
cos

(
k(0)

i h
)

+ k(1)

i J1

(
δ(0)

i r
)[

cos
(
k(0)

i h
)

− k(0)

i h sin
(
k(0)

i h
)]]

+ i
∑

i

a+

i

k(0)

i J1

(
δ(0)

i r
)

ω
cos

(
k(0)

i h
)

= +
1 + i

2
√

2

∑
i

a(0)

i δ(0)

i

2
J
(
δ(0)

i r
)
sin

(
k(0)

i h
) [

1

(2 + ω)3/2
− i

(2 − ω)3/2

]
. (D 1)

In order to derive the expression of the a+

i , one has to express the quantity rJ ′
1
(δ(0)

i r)
as a function of the J1(δ

(0)

i r). The Dini’s expansion of rJ ′
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i r) can be obtained by
means of the formula in Watson’s book (Watson 1952, pp. 580, 581), giving
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where
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The integrated expression of Sim is as follows
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A linear identification in (D 1) leads to the expression of a+

i
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Appendix E. Expressions of the corrective complex torques
E.1. Expression of m̃(0)

The viscous shear complex torque results from the integration of the shear constraint
on the lateral wall, giving

m̃(0) = −π
√

2ω(1 + i)

{ ∞∑
i=1

a(0)

i
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(E 1)

At the resonant frequency ω0, coefficients of Laurent’s expansion (3.10a) of m̃(0) are
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(E 2)
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D̃(0)

I
= −π

√
2

4ω2
0

(ω0 − 2)
(
k(0)

i

2
+ 1

)
k(0)

i J1

(
δ(0)

i

)
h dk(0)

i /dω

{
hJ1

(
δ(0)

i

)
(2 − ω0)1/2

+ ω1/2
0

[
2δ(0)

i J ′
1

(
δ(0)

i

)
+ ω0J1

(
δ(0)

i

)(
4 − ω2

0

)
k(0)

i

2
+

J1

(
δ(0)

i

)
ω0

]}
. (E 3)

In the previous expressions, δ(0)

i , k(0)

i and the derivative dk(0)

i /dω are considered at ω = ω0.

E.2. Expression of m̃(1)

Corrected pressure at order 1 in the lateral boundary layer results from the integration
of the first equation of the system (C 1a).

p̃(1) = − 2√
ω
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The equivalent quantity for the upper wall is zero. Integration of the previous
expression leads to the complex torque m̃(1)

m̃(1) =
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At the resonant frequency ω0, the associated coefficients in Laurent’s expansion (3.10b)
of m̃(1) are
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and

D̃(1)

I
= D̃(1)

R
. (E 7)

In the previous expressions, δ(0)

i , k(0)

i and the derivative dk(0)

i /dω are considered at ω = ω0.

E.3. Expression of m(1)
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with
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and ei = a(0)
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The coefficients of poles of order 2 in Laurent’s expansion (3.11) of m(1) are given by
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As usually δ(0)

i , k(0)

i and the derivative dk(0)

i /dω are considered at the resonant frequency
ω =ω0. The coefficients D(1)

R
and D(1)

I
of the pole of order 1 in m(1) Laurent’s expansion

are not given as their expressions are too lengthy. They can be easily obtained by
using a formal calculation software.
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